Stationary distributions for diffusions with inert drift
نویسندگان
چکیده
Consider a reflecting diffusion in a domain in R that acquires drift in proportion to the amount of local time spent on the boundary of the domain. We show that the stationary distribution for the joint law of the position of the reflecting process and the value of the drift vector has a product form. Moreover, the first component is the symmetrizing measure on the domain for the reflecting diffusion without inert drift, and the second component has a Gaussian distribution. We also consider processes where the drift is given in terms of the gradient of a potential.
منابع مشابه
Markov processes with product-form stationary distribution
This research has been inspired by several papers on processes with inert drift [5, 6, 4, 3, 1]. The model involves a “particle” X and an “inert drift” L, neither of which is a Markov process by itself, but the vector process (X, L) is Markov. It turns out that for a number of diffusions with inert drift, the stationary measure has the product form; see [1]. The purpose of this note is to chara...
متن کاملQuasi-stationary Distributions and Diffusion Models in Population Dynamics by Patrick Cattiaux, Pierre Collet,
In this paper we study quasi-stationarity for a large class of Kolmogorov diffusions. The main novelty here is that we allow the drift to go to −∞ at the origin, and the diffusion to have an entrance boundary at +∞. These diffusions arise as images, by a deterministic map, of generalized Feller diffusions, which themselves are obtained as limits of rescaled birth–death processes. Generalized Fe...
متن کاملQuasi-stationary Distributions and Diffusion Models in Population Dynamics
In this paper, we study quasi-stationarity for a large class of Kolmogorov diffusions. The main novelty here is that we allow the drift to go to −∞ at the origin, and the diffusion to have an entrance boundary at +∞. These diffusions arise as images, by a deterministic map, of generalized Feller diffusions, which themselves are obtained as limits of rescaled birth–death processes. Generalized F...
متن کاملStationary Distributions for Jump Processes with Inert Drift
We analyze jump processes Z with “inert drift” determined by a “memory” process S. The state space of (Z, S) is the Cartesian product of the unit circle and the real line. We prove that the stationary distribution of (Z, S) is the product of the uniform probability measure and a Gaussian distribution.
متن کاملQuasi-stationarity distributions and diffusion models in population dynamics
In this paper, we study quasi-stationarity for a large class of Kolmogorov diffusions, that is, existence of a quasi-stationary distribution, conditional convergence to such a distribution, construction of a Q-process (process conditioned to be never extinct). The main novelty here is that we allow the drift to go to −∞ at the origin, and the diffusion to have an entrance boundary at +∞. These ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008